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2. Abstract  

A G/G/s queue is a type of system where customers arrive randomly and are served for varying 
durations, and are attended to by multiple servers. Predicting performance metrics like Wq 
(average wait time in queue) and Lq (average number in queue) is very important for optimizing 
operations in high-traffic environments such as hospitals, banks, and call centers. This project 
generated 10,000 synthetic queuing scenarios using Excel VBA, simulating arrival and service 
rates. Machine learning models including neural networks built using TensorFlow/Keras were 
trained to predict Wq and Lq based on input parameters. The findings found in this project show 
that machine learning can replace traditional queueing formulas for faster, more scalable 
performance in complex, real-life systems. 

3. Introduction 

This project explores how machine learning can help us better understand and manage the 
queueing system behind many real-world services like hospitals, banks, and call centers. These 
systems model how people or tasks line up, wait, and get served. Traditionally, models like 
M/M/s queues assume everything is neat and mathematical: arrivals and service times follow 
exponential (predictable) patterns. But real life is messy. People don’t show up or get helped at 
perfectly random intervals. That’s where the G/G/s queue comes in. It allows general (any kind 
of) arrival and service time distributions, plus multiple servers, making it much more realistic. 
The goal of this project is to accurately predict Wq, the average waiting time in line. Instead of 
relying on complicated formulas and approximations, I trained three machine learning models on 
data generated through simulated G/G/s systems. This approach offers a fast, flexible way to 
predict queue performance, helping decision-makers in service industries save time, reduce 
congestion, and improve experiences. 

4. Theoretical Background 

A queue is just a fancy word for a line whether it's people waiting at Tim Hortons, patients at a 
hospital, or data packets on the internet. Queueing theory helps us understand how long people 
wait, how many are in line, and how busy the service area is. To do this, we look at some key 
input variables: 

●​ λ (lambda) = average arrival rate → This is how many people or tasks arrive per time unit 
(e.g., 10 patients/hour). 

●​ μ (mu) = average service rate → This is how many can be served per time unit (e.g., 5 
patients/hour per doctor). 

●​ s = number of servers →This is how many people or machines are serving the queue 
(e.g., 3 doctors). 

●​ ρ (rho) = utilization →This is how busy the system is, calculated as ρ = λ / (s × μ). 

 



 

●​ Lq = Length of Queue → This is how many people are in the queue​
 

To calculate the output of Wq (average wait time in queue) in the dataset, I used some 
approximation formulas designed for G/G/s systems.   

However, analytical methods have limitations. They're based on steady-state assumptions, which 
means the system never changes, runs forever, and behaves perfectly which isn’t how real life 
works. In hospitals, for example, patients may arrive in bursts, or service may vary depending on 
urgency. That’s why machine learning is a better alternative. ML models like neural networks 
can learn from real or simulated data and make fast, accurate predictions even when the math is 
too complex or the assumptions don’t hold.  

5. Methodology 

5.1 Data Generation 

To build the predictive models, I created a synthetic dataset of 10,000 queueing scenarios using 
Excel VBA. 

●​ Input ranges:​
 

○​ ρ (utilization): 0.5 – 0.99 
○​ λ (arrival rate): 1 – 20 
○​ s (number of servers): 1 – 10 
○​ μ (service rate): Derived using: μ = λ / (ρ × s) 
○​ Lq: Derived using Lq = λ × Wq 

 

●​ Outputs:​
 

○​ Wq: Estimated using the Allen-Cunneen approximation​
​

 

 



 

To generate the output variable Wq (average wait time). I used analytical approximation 
formulas based on queuing theory for G/G/s systems (e.g., Allen-Cunneen approximation), since 
full-scale simulations for each point would be too time-consuming. 

5.2 Feature Engineering & Preprocessing 

●​ Input Features: λ, μ, s, ρ, Lq​
 

●​ Output Variable: Wq​
 

●​ Normalization: StandardScaler applied​
 

●​ Data Split: 70% training, 30% testing 

5.3 Machine Learning Setup 

Architecture: 

●​ Neural Network (NN): 3 hidden layers with 32, 16, and 1neurons 
●​ Activation functions: ReLU for hidden layers, Softplus for output 

Loss Function: 

●​ Mean Squared Error (MSE) 

Optimizer: 

●​ Adam Optimizer with learning rate 0.001 

Framework Used: 

●​ Keras with TensorFlow backend for NN 
●​ Scikit-learn for Random Forest 
●​ XGBoost for Gradient Boosted Trees 

Training Process: 

●​ Epochs: 100 for NN 
●​ Batch Size: 32 
●​ Hardware/Software: Python, Intel i7 CPU, 16GB RAM, Windows 10 

 

 



 

6. Results 

6.1 Performance Metrics (Test Set) 

Prediction Performance (Testing): 

●​ Neural Network 
○​ MAE: 0.0959 
○​ MSE: 0.0729 
○​ RMSE: 0.2700 

●​ Random Forest 
○​ MAE: 0.0342 
○​ MSE: 0.0642 
○​ RMSE: 0.2533 

●​ XGBoost 
○​ MAE: 0.0342 
○​ MSE: 0.0642 
○​ RMSE: 0.2533 

7.2 Visualizations 

●​ Scatter Plots: Predicted vs Actual Wq values closely aligned, especially for RF and 
XGBoost. 

●​ Residual Analysis: Neural network showed greater variance; tree-based models had 
tighter error distributions. 

●​ Learning Curve: Neural network’s validation loss stabilized after ~60 epochs with mild 
signs of overfitting.​
 

8. Discussion 

8.1 Interpretation 

●​ The neural network achieved high correlation but required careful tuning and was more 
sensitive to noise. 

●​ Random Forest and XGBoost outperformed the neural net in accuracy and stability with 
minimal tuning. 

●​ The models effectively captured non-linear relationships among variables.​
 

8.2 Limitations 

 



 

●​ Used synthetic data only, no real-world data. 
●​ Assumed steady-state behavior (no dynamic or time-varying queues). 
●​ Focused on G/G/s queues only excluded finite buffers (G/G/s/K), priorities, or blocking. 

8.3 Potential Improvements 

●​ Try ensemble stacking or attention models (Transformers) 
●​ Apply models to real-world healthcare/hospital queuing data 
●​ Add support for time-dependent features as dataset relied on steady state queues 

9. Conclusion 

9.1 Summary 

This project set out to predict queuing metrics like Wq using machine learning trained on 
simulated G/G/s queue data. The results show that: 

●​ Tree-based models (RF, XGBoost) outperformed neural networks 
●​ ML models can serve as fast, reliable predictors even for complex queueing behavior 
●​ Neural networks are promising but need hyperparameter tuning and larger datasets 

9.2 Key Takeaways 

●​ ML is a viable alternative to traditional queue theory approximations 
●​ Synthetic data can still produce accurate models 
●​ Model performance varies significantly by algorithm choice 
●​ Neural networks are flexible but not always best without optimization 
●​ Random Forest and XGBoost offer strong baselines for tabular regression problems 

9.3 What I Learned 

●​ Built a complete ML pipeline from data generation → prediction → evaluation 
●​ Deepened understanding of queuing systems and their real-world significance 
●​ Gained hands-on experience in modeling, feature engineering, and Simul8 

Future Work: 

●​ Extend to G/G/s/K queues with finite buffers 
●​ Add arrival/service distributions that change over time 
●​ Build and deploy a real-time Wq prediction web app/tool 
●​ Make DES in Simul8 actually work 
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11. Appendices 

A. Sample Dataset (first 5 rows) 

 

B. Code Repository 

GitHub: https://github.com/Tabulater/KingsUniveristyCollege 

C. Approximation Formulas 

●​ Allen-Cunneen for Wq​
 

●​ Lq = λ × Wq 

D. Chart/Plots 

 

https://linkprotect.cudasvc.com/url?a=https%3a%2f%2fwww.iveycases.com%2fProductView.aspx%3fid%3d102463&c=E,1,LXaOPTTaM6ZHZZwRLF29AaCllRXMt1qeOwVJRx2BhmHPpfLIJFlxoFsnOYMBHIgyTrq[INVALID]o-7EiocU6YDYY0FJeCzywFW7fMZzMljBF6&typo=1
https://github.com/Tabulater/KingsUniveristyCollege


 

 

 


	4. Theoretical Background 
	5. Methodology 
	5.1 Data Generation 
	5.2 Feature Engineering & Preprocessing 
	5.3 Machine Learning Setup 
	6. Results 
	6.1 Performance Metrics (Test Set) 
	7.2 Visualizations 

	8. Discussion 
	8.1 Interpretation 
	8.2 Limitations 
	8.3 Potential Improvements 
	9.1 Summary 
	9.2 Key Takeaways 
	9.3 What I Learned 

	10. References 
	11. Appendices 
	C. Approximation Formulas 
	D. Chart/Plots 


